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Abstract

We present a theoretical model for breaking various cryptographic schemes by taking advantage of
random hardware faults. We show how to attack certain implementations of RSA and Rabin signatures.
We also show how various authentication protocols, such as Fiat-Shamir and Schnorr, can be broken using
hardware faults.

1 Introduction

Direct attacks on the famous RSA cryptosystem seem to require that one factor the modulus. Therefore, it is
interesting to ask whether there are attacks that avoid this. The answer isyes: the first was the recent attack
based ontiming [2]. It was observed that afew bits could be obtained fromthe ¢ / ne that operationstook. This
would allow oneto break the system without factoring.

We have anew type of attack that also avoidsdirectly factoring the modulus. We essentially use the fact that
from time to time the hardware performing the computations rmay introduce errors. There are several models
that may enable a malicious adversary to collect and possibly cause faults. We give ahigh level description:

Transient faults Consider a certification authority (CA) that is constantly generating certificates and sending
them out to clients. Due to random transient hardware faults the CA might generate faulty certificates
on rare occasions. If afaulty certificate is ever sent to a client, that client will be ableto break the CA's
system and generate fake certificates. Note that on various systems, a client is aerted when a faulty
certificate is received.

Latent faults Latent faults are hardware or software bugs that are difficult to catch. As an example, consider
the Intel floating point division bug. Such bugs may also cause a CA to generate faulty certificates from
timeto time.

Induced faults When an adversary has physical access to a device she may try to purposely induce hardware
faults. For instance, one may attempt to attack a tamper-resistant device by deliberately causing it to
malfunction. The erroneous values computed by the device enable the adversary to extract the secret
stored on it.
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We consider afault model in which faultsare transient. That is, the hardware fault only affects the current
data, but not subsequent data. For instance, a bit stored in a register might spontaneously flip. Or a certain
gate may spontaneously produce an incorrect value. Note that the changeistotally silent: the hardware and the
system have no clue that the change has taken place. We assume that the probability of such faultsis small so
that only asmall number of them occur during the computation.

Our attack is effective against severa cryptographic schemes such as the RSA system and Rabin signa-
tures[5]. Theattack also appliesto several authentication schemes such as Fiat-Shamir [3] and Schnorr [6]. As
expected, theattack itself dependson the exact implementation of each of these schemes. For animplementation
of RSA based on the chinese remainder theorem we show that given one faulty version of an RSA signature
one can efficiently factor the RSA moduluswith high probability. The same approach can a so be used to break
Rabin’s signature scheme. Hardware faults can be used to break other implementations of the RSA system
though many more faulty values are required.

In Section 4 we show that the Fiat-Shamir identification scheme [3] is vulnerable to our hardware faults
attack. Given a few faulty values an adversary can completely recover the private key of the party trying to
authenticateitself. In Section 5 we obtainthe sameresult for Schnorr’s identification protocol [6]. Both schemes
are suitable for use on smart cards.

Itisimportant to emphasize that the attack described in thispaper is currently theoretical. 1t hasnot yet been
experimented with in the lab. The purpose of these results is to demonstrate the danger that hardware faults
pose to various cryptographic protocols. The conclusion one may draw from these resultsis the importance of
verifying the correctness of a computation for securi t y reasons. For instance, a smart card using RSA to
generate signatures should check that the correct signature has indeed been produced. The same appliesto a
certification authority using RSA to generate certificates. In protocols where the device has to keep some state
(such asin identification protocols) our results show the importance of protecting the registers storing the state
information by adding error detection bits (e.g. CRC). We discuss these pointsin more detail at the end of the

Paper.

2 Chineseremainder based implementations

21 TheRSA system

In this section we consider a system using RSA to generate signaturesin anaiveway. Let N = pq be aproduct
of two large prime integers. To sign a message = using RSA the system computes z° (mod N) where s isa
secret exponent. Here the message « isassumed to be aninteger intherange1to N (usually onefirst hashesthe
message to an integer in that range). The security of the system relies on the fact that factoring themodulus NV is
hard. Infact, if thefactorsof N are known then one can easily break the system, i.e., sign arbitrary documents
without prior knowledge of the secret exponent.

The computationally expensive part of signing using RSA is the modular exponentiation of theinput «. For

efficiency some implementations exponentiate as follows: using repeated squaring they first compute £1 = z*

(mod p) and E» = 2° (mod ¢). They then use the Chinese remainder theorem to compute the signature
FE =2 (mod N). We explain thislast step in more detail. Let a, b be two precomputed integers satisfying:

a=1 (mod p) b=0 (mod p)
{aEO (mod q) 2 {bzl (mod )

Such integers always exist and can be easily found given p and ¢. It now followsthat

E=alb1+bFy (mod N)
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Thus, thesignature £ iscomputed by forming alinear combination of £1 and F5. Thisexponentiationalgorithm
is more efficient than using repeated squaring modulo N since the numbersinvolved are smaller.

2.2 RSA’svulnerability to hardware faults

Our simple attack on RSA signatures using the above implementation enables usto factor themodulus N. Once
the modulusis factored the system is considered to be broken. Our attack is based on obtaining two signatures
of the same message. One signatureis the correct one; the other is afaulty signature. At the end of the section
we describean improvement dueto Arjen Lenstra[4] that factorsthe modulus using just asinglefaulty signature
of aknown message M.

Let M beamessageand let £/ = M* mod N be the correct signature of the message. Let F be afaulty
signature. Recall that ' and E are computed as

E=aFE{+bEy, (mod N) and E=aFq+bky (mod N)

Suppose that by some miracul ous event a hardware fault occurs only during the computation of one of £1, E.
WLOG, supposeahardwarefault occursduring thecomputationof £ but nofault occursduring thecomputation
of Ez, i.e EZ = Ez. Observe that

E— E=(aEq+bEy) — (akq +bEy) = a(Fq — &)
Now, if Eq — E1 isnot divisibleby p then
ged(E — £, N) = ged(a(Ey — Fp), N) = ¢

and so N can be easily factored. Notice that if the factors of N are originally chosen at random then it is
extremely unlikely that p divides &4 — F1. After al, £1 — E1 can have at most log NV factors.

To summarize, using one faulty signature and one correct one the modulus used in the RSA system can
be efficiently factored. We note that the above attack works under a very general fault model. It makes no
difference what type of fault or how many faults occur in the computation of £41. All werely on isthefact that
faults occur in the computation modulo only one of the primes.

Arjen Lenstra [4] observed that, in fact, one faulty signature of a known message M is sufficient. Let
E =M*mod N. Let £ beafaulty signature obtained under the same fault as above, that is £ = £ mod ¢ but
E # E mod p. It now follows that
ged(M — E°,N)=¢

where e is the public exponent used to verify the signature, i.e. E° = M mod N. Thus, using the fact that
the message M is known it became possible to factor the modulus given only one faulty signature. Thisis
of interest since most implementations of RSA signatures avoid signing the same message twice using some
padding technique. Lenstra'simprovement showsthat as|ong as the entire signed message is known, even such
RSA/CRT systems are vulnerable to the hardware faults attack.

The attack on chinese remainder theorem implementations applies to other cryptosystems as well. For
instance, the same attack applies to Rabin’s signature scheme [5]. A Rabin signature of a number = mod N
isthe modular square root of =. The extraction of square roots modulo a composite makes use of CRT and is
therefore vulnerable to the attack described above.



3 Register faults

>From here on our attacks are based on a specific fault model whichwecall regi st er faul ts. Consider
a tamper-resistant device. We view the device as composed of some circuitry and a small amount of memory.
The circuitry is responsible for performing the arithmetic operations. The memory (registers plus a small on
chip RAM) isused to store temporary val ues.

Our fault model assumes that the circuitry contains no faults. On the other hand, avalue stored in aregister
may be corrupted. With low probability, one (or afew) of the bits of the value stored in some register may flip.
We will need this event to occur with sufficiently low probability so that there is some likelihood of the fault
occurring exactly once throughout the computation. As before, al errors are transient and the hardware has no
clue that the change has taken place.

4 TheFiat-Shamir identification scheme

The Fiat-Shamir [3] identification scheme is an efficient method enabling one party, Alice, to authenticate it’s
identity to another party, Bob. They first agree on an n-bit modulus N' which is a product of two large primes
and a security parameter ¢. Alice's secret key isaset of invertible elements sq, ..., s; mod N. Her public key
is the square of these numbers vy = s2,..., v, =s2 (mod N). To authenticate herself to Bob they engagein
the following protocol:

1. Alicepicksarandom r and sends 2 mod N to Bob.

2. Bob picksarandom subset 5 C {1,...,¢} and sendsthe subset to Alice.

3. Alicecomputesy =r - [];c5s; mod N and sends y to Bob.

4. Bob verifies Alice'sidentity by checking that y2 = r2 - [[;cg v (mod N) .

We show that by using hardware faults one can recover Alice's secret keys sq,...,s;. For the purpose
of authentication one may implement Alice’s role in a tamper resistant device. The device contains the secret
information and is used by Alice to authenticate herself to various parties. We show that using register faults
one can extract the secret s from the device. We use register faults that occur while the device iswaiting for a
challenge from the outside world.

Theorem4.1 G ven t faulty runs of the protocol one can recover the secret s with
probability at |east half using O(nzt) ari thnetic operations.

Proof Suppose that due to a miraculous fault, one of the bits of the register holding the value r is flipped
while the device is waiting for Bob to send it the set S. In this case, Bob receives the correct value 72 mod NV,
however y is computed incorrectly by the device. Due to the fault, the device outputs:

g=r+E£)-I]s
i€s
where F is the value added to the register as a result of the fault. Observe that since Bob knows the value
[I;cs vi he can compute
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Since F isabinary number of low weight (i.e. apower of 2 or asum of afew powers of 2), Bob can guessthis
value. If F isguessed correctly then Bob can recover r since

(r+E)2—12=2E-r+E2 (mod N)

and thislinear equationin » can be easily solved. Bob's ability to discover the secret random value r isthemain
observation which enables him to break the system. Using the value of » and £ Bob can compute:

- _Y

.HSZ T (mod N)
€S

To summarize, Bob can compute the value [ [, 5 s; by guessing the fault value £ and using the formula:

[Isi=—

€S v _ 2+ p2
' Hiesvi

2F - §

(mod N)

We now argue that Bob can verify that the fault value £/ was guessed correctly. Let T' be the hypothesized
value of ], ¢ s; obtained from the above formula. To verify this value Bob interacts with the device under
normal conditions so that the device works properly. The point is that Bob uses the same set .5 which he used
when the devicegenerated thefault. Thedevicewill now correctly producetwovalues(r/)2 and y’ = r'- [Tics si-
Now Bob simply checks that (y)2 = (+')2 - T2. Usually there is only one low-weight value E satisfying the
relation. In such acase Bob correctly obtainsthe value of [];c s s;.

Even in the unlikely event of two values F, £’ satisfying the relation, Bob can still break the system.
Observethat therelation ()2 = (')2 - T2 impliesthat T2 = [[;. 5 s2. If therearetwo low-weight values ., £
generatingtwovaluesT, 7', T # T’ satisfying therelation then clearly T2=(1"2mod N. If T Z-T"mod N
then Bob can aready factor V. Suppose” = —1" mod N. Then sinceoneof 7" or 7/ must equal ;s s; (one
of £, E' isthe correct fault value) it follows that Bob now knows[];c s s; mod N up to sign. For our purposes
thisis good enough.

The testing method above enables Bob to check whether a certain value of F isthe correct one. Since ¥
isalow binary weight integer Bob can try all possiblevaluesfor £. For instance, if we assume the fault is a
single bit flip then there are only n possible values for £ (sinceinthiscase £ = 2" for some1 < k < n). By
testing al possible valuesfor £ until the correct oneis found Bob can compute [ s;.

Observe that once Bob has a method for computing [ ;s s; for various sets 5’ of his choice, he can easily
findsq,...,s;. Thesimplest approachisfor Bobto construct [, s; for singletonsets, i.e. sets .S’ containinga
singleelement. If S = {k} then]];cs s; = s, and hencethe s;’s areimmediately found. However, it is possible
that the device might refuse to accept singleton sets 5. In this case Bob can still find the s;’s as follows. We
representaset S C {1,...,t} byitscharacteristicvector U € {0,1}!,i.e. U; = 1ifi € S and U; = 0 otherwise.
Bob pickssets 51, . . ., 5¢ such that the corresponding set of characteristic vectors Uy, . .., U; form at x ¢ full
rank matrix over Z. Bob then uses the method described above to construct the values7’; = [T, s, s; for each
of thesets 59, ..., 5;. To determine s Bob constructselementsay, . . ., a; € {0, 1} such that

aUq+...+a;U; =(1,0,0,...,0) (mod 2)

These elements can be efficiently constructed since the vectors Uy, . . ., U; are linearly independent over Z».
When all computations are done over the integers we obtain that

ar U1 +...+a U = (2()1+l, 2()2, 2()3, cey 2by)



for some known integersbq, . . ., b;. Bob can now compute s1 using the formula

Ti T
s1=—+ """ (mod N)
/Ul ---/Utt

Recall that thevalues »; = 32»2 (mod N) are publicly available. Thevalues sy, . . ., s; can be constructed using
the same procedure.

The procedure above made use of ¢ faults and took O (nzt) arithmetic operations. O

We emphasize that the faults occur while the device is waiting for a challenge from the outside world.
Conseguently, the adversary knows at exactly what time the register faults must be induced.

4.1 A modification of the Fiat-Shamir scheme

Onemay suspect that our attack on the Fiat-Shamir schemeis successful dueto the fact that the schemeis based
on sguaring. Recall that Bob was able to compute the random value  chosen by the device since he was given
r2 and (r + /)2 where I isthefault value. One may try to modify the scheme and use higher powers. We show
that our techniques can be used to break this modified scheme as well.

Themodified scheme uses some publicly known exponent e instead of squaring. Asbefore, Alice'ssecret key
isaset of invertibleelements sy, .. ., s; mod N. Her publickey theset of numbersvq = s9,...,v; = sf mod N.
To authenticate herself to Bob they engage in the following protocol:

1. Alicepicksarandom r and sends»“ mod N to Bob.

2. Bob picksarandomsubset 5 C {1,...,¢} and sendsthe subset to Alice.

3. Alicecomputesy = r - [];cs s; mod N and sends y to Bob.

4. Bob verifies Alice'sidentity by checking that y© = 7¢ - [[;csv;  (mod N) .

When e = 2 this protocol reduces to the original Fiat-Shamir protocol. Using the methods described in the
previous section Bob can obtain the values L4 = »* mod N and Lo = (r + £)° mod N. As before we may
assume that Bob guessed the value of F correctly. Given these two values Bob can recover r by observing that
r isacommon root of the two polynomias

x*=L17 (mod N) and (z+E)° =Ly (modN)

Furthermore, r is very likely to be the only common root of the two polynomials. Consequently, when the
exponent e is polynomial in » Bob can recover » by computing the GCD of the two polynomials. Once Bob
has amethod for computing  he can recover the secrets sq, . . ., s; as discussed in the previous section.

We note that the system can be broken even when alarge exponent e < N is used, by using a much larger
collection of faults. We give the detailsin the final version of the paper.

5 Attacking Schnorr’sidentification scheme

The security of Schnorr’s identification scheme [6] is based on the hardness of computing discrete log modulo
aprime. Alice and Bob first agree on a prime p and a generator g of Z;. Alice chooses a secret integer s
and publishesy = ¢* mod p as her public key. To authenticate herself to Bob, Alice engages in the following
protocol:



1. Alicepicksarandom integer r € [0, p) and sends = = ¢” mod p to Bab.

2. Bob picks arandom integer ¢t € [0, 7] and sendst to Alice. Here T' < p is some upper bound chosen
ahead of time.

3. Alicesendsu =r+t¢-s mod p — 1to Bab.
4. Bob verifiesthat ¢* = 2 - 4* mod p.

For the purpose of authentication one may implement Alice’s role in atamper resistant device. The device
contains the secret information s and is used by Alice to authenticate herself to various parties. We show that
using register faults one can extract the secret s from the device.

Theorem 5.1 Let p be an n-bit prine. Gven nlogn faulty runs of the protocol
one can recover the secret s with probability at |east % usi ng O(nz) arith-
nmetic operations.

Proof Bob wishing to extract the secret information stored in the device first picks a random challenge ¢.
The same challenge will be used in all invocations of the protocol. Since the device cannot possibly store all
challenges given to it thus far, it cannot possibly know that Bob is always providing the same challenge ¢. The
attack will enable Bob to determinethe valuet - s mod p from which the secret value s can be easily found. For
simplicity we set = ¢ts mod p and assume that ¢* mod p isknown to Bob.

suppose that due to a miraculous fault, one of the bits of the register holding the value r is flipped while
the deviceiswaiting for Bob to send it the challenge ¢. More precisely, when the third phase of the protocol is
executed thedevicefinds# = r+2° intheregister holding ». Consequently, thedevicewill output & = #+2 mod p.
Bob can determinethe valueof : (thefault position) by tryingal possiblevalues: = 0, . . ., n until an ¢ satisfying

9" =9%¢"g" (mod p)
isfound. Assumingasinglebit flip, thereisexactly one such i. The aboveidentity provesto Bob that 7 = r + 2!
showing that the 7'th bit of  flipped from a0to al. Consequently, Bob now knows that indeed that +'th bit of
 must be 0. Similar logic can be used to handle the case where 7+ = r — 2'. In this case bob can deduce that the
i'thbitof r is 1.

Moreabstractly, Bobisgivenz+r(D, .. . z+r() mod pfor randomvaluesrD, . . ., +) (recall k = n logn).
Furthermore, Bob knows the value of some bit of each of r(l) ..,7®). We claim that from thisinformation
Bob can recover z intime O(nz) We assume the faults occur a unlformly and independently chosen locations
in theregister . It followsthat with probability at least 3 7 afault will occur in every bit position of the register
r. In other words, for every 1 < ¢ < n there existsan 7‘(2) among r(l), ce, T r(¥) such that the i’ th bit of () is
known to Bob (we regard thefirst bit as the L SB).

To recover = Bob first guesses the log8n most significant bits of ». Later we show that Bob can verify
whether hisguessiscorrect. Bob triesall possiblelog 8r bit strings until the correct oneisfound. Let X bethe
integer which matches = on the most significant log 8n bitsandiszero on al other bits. For now we assume that
Bob correctly guessed the value of X'. Bob recovers the rest of x starting with the LSB. Inductively suppose
Bob aready knowsbitsz,_1 ...zoxzq1 of z (Initidly = 1). LetY = Z;;% 2z ;. To determine bit =; Bob uses
r(), of which he knows the i'th bit and the value of = + (). Let b bethe 'th bit of »(), Then

z;=b® Pthbitiz +r® — Y — X mod p — 1)

assuming no wrap around, i.e., z + Py - x < p—1. Sincex — X < p/8n wrap around will occur only if
HORN 1- é)p. Since the r’s are independently and uniformly chosen in the range [0, p) the probability that
thisdoesn’t happen in all » iterations of the algorithm is more than %.
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To summarize we see that once X is guessed correctly the algorithm runsin linear time and outputs = with
probability at least 5. (The reason for the 3 is that both all bits of r should be “covered” by faults and all r;

should not be too large. Both events are satisfied with probability at |east %.) Of course, once a candidate = is
found it can be easily verified using the public data. There are O(n) possible valuesfor X and hence the total
running time of the algorithmis O (n2). O

We note that the attack also worksin the case of multiple bit flips of the register ». Aslong as the number
of bit flipsis constant, their exact location can be found and used by Bob. We also note that the faults we use
occur while the deviceiswaiting for a challenge from the outsideworld. Conseguently, the adversary knows at
exactly what time the faults should be induced.

6 Breakingother implementationsof RSA

In Section 2.1 we observed that CRT based implementations of RSA can be easily broken in the presence of
hardware faults. In this section we show that using register faultsit is possibleto break other implementations
of RSA as well. Let N be n-bit RSA composite and s a secret exponent. The exponentiation function
x — 2° mod N can be computed using either one of the following two algorithms (we regard bit one as the
LSB and bit » asthe MSB):

¢ Algorithm|

init y —a; 2z« 1

main Fork=1,... n.
If K’thbitof sislthenz «— z-y (mod N).
y — y2 (mod N).

Output z.

e Algorithmll

init z — z.

main For & = n downto 1.
If k'thbitof sislthenz — 222 (mod N).
Otherwise, = — 22 (mod N).

Output z.

For both algorithms given several faulty values one can recover the secret exponent in polynomia time.
Here by faulty valueswe mean values obtained in the presence of register faults. Theattack only uses erroneous
signatures of r andon y chosen messages; the attacker need not obtain the correct signature of any of the
messages. Furthermore, an attacker need not obtain multiple signatures of the same message. The following
result was the starting point of our research on fault based cryptanalysis:

Theorem 6.1 Wth probability at |east % t he secret exponent s can be extracted

froma device inplenenting the first exponentiation algorithm by collecting
(n/m)logn faults and O(Zm-n4) arithnetic steps, for any 1<m <n.

Proof We usethe following type of faults: let M € 7 be amessage to be signed. Supposethat at asingle
random point during the computation of M° mod N aregister fault occurs. That is, at a random point in the



computation one of the bits of the register = isflipped. We denote the resulting erroneous signature by E. We
intend to show that an ensembl e of such erroneous signatures enabl es one to recover the secret exponent s. Even
if other types of faulty signatures are added to the ensembl e, they do not confuse our algorithm.

Let! = (n/m)logn and let Mq,..., M; € Zx be aset of arbitrary messages. Set £; = M? mod N to be
the correct signature of M;. Let £; be an erroneous signature of M;. A register fault occurs at exactly one
point during the computation of E;. Let k; bethevalueof & (recall k inthe counter in algorithm 1) at the point
at which the fault occurs. Thus, for each faulty signature E; thereisa corresponding k; indicating the time at
which the fault occurs. We may sort the messagesso that 1 < kq < ko < ... < k; < n. Thetimeat which the
faults occur is chosen uniformly (among the » iterations) and independently at random. It followsthat given [
such faults, with probability at least half £,.q — k; < mforali=1,..., m. Sincewe do not know where the
faults occur, the values k; are unknown to us.

Lets =s,s,_1...s1 bethebitsof the secret exponent s. We recover ablock of these bitsat atime starting
with the MSBs. Suppose we aready know bits s, s, _1...sg, for some:. Initially : =/ + 1 indicating that no
bits are known. We show how to recover bits s, _1s, _2...sx_,. Weintend to try &l possible bit vectors

until the correct oneisfound. Since even thelength of the bl ock we arelooking for is unknown, we have to try
all possiblelengths. The agorithm works as follows:

1. Fordllengthsr =0,1,2 3...do:
2. For dl candidate r-bit vectors u;, _quy. ... ux,—, do

3. Define s’ to bethe integer whose bits match those of s at all known bit positionsand are zero everywhere
else. In other words, s’ = "% s;2/. Similarly, define v’ = Z’?_kl_T u;2.

4. Testif the current candidate bit vector is correct by checking if one of the erroneous signatures Ej , J=
., | satisfies

~ s d
Jee{0,...,n} st (B x22M™) = M; (mod N)

Recall that d is the public signature verification exponent. The + means that the condition is satisfied if
it holdswith either a plus or minus.

5. If asignature satisfying the above conditionisfound output u;, _qu,,. 2. ..u . and stop. At thispoint
weknowthat k;, 1 =k, —rands; qs;.. _o.. PSk_q T Up AUp, 2 Uki—r

The condition at step (4) is satisfied by the correct candidate v, _q1u,_2...ux_,. To seethisrecal that
F,;_1isobtained from afault at the k,_1’st iteration. That is, at the k;_1’st iteration the value of =~ was changed
to Z < » £ 2° for somee. Noticethat at thispoint £, _1 = zMjfi“'. From that point on no fault occurred and
therefore the signature £, _ ¢ satisfies

B, =M =B, g+ 2°M25 (mod N)

When in step (4) the signature Ei_l is corrected it properly verifies when raised to the public exponent.
Conseguently, when the correct candidate is tested, the faulty signatureE .1 Quaranteesthat it is accepted.

We still need to show that awrong candidate will not pass the test. Suppose some S|gnature E, incorrectly
causesthewrong candidate «’ to beaccepted at somepointintheal gorlthm Thatis, £2,+2° M2+ = E, mod N
even though E,was generated by adifferent fault. Weknow that E,= E,+2°1 M, » 1 for somee 1, u1. Therefore,

E,x21M, L2 = E, (mod N)



In other words, M, isaroot of a polynomial of the form aq2“1 + ap2“2 = 0 mod N for some aq, ag, u1, uo.
This polynomia has a unique root as long as u1 — uy is invertible modulo N — 1. Since the message M,
is chosen independently of the fault location (i.e. independently of eq, «q) it follows that A, is aroot with
probability 1/N . Sincethetest isinvoked only 27 n2 i mes thistype of mistakewill happen only with negligible
probability (2"n2 < N).

Thetest at step (4) takes O (n3) time and therefore the total running of this procedureis O (2™ n4). O

7 Protecting against an attack based on hardware faults

One can envision several methods of protection against the type of attack discussed in the paper. The simplest
method isfor the deviceto check the output of the computation beforereleasing it. Though thisextraverification
step might reduce system performance, our attack suggeststhat it is crucial for security reasons.

Our attack on authentication protocols such as the Fiat-Shamir scheme uses a register fault which occurs
whilethedeviceiswaiting for aresponse from the outsideworld. One can not protect against thistype of afault
by simply verifying the computation. As far as the device is concerned, it computed the correct output given
the input stored in its memory. Therefore, to protect multi-round authentication schemes one must ensure that
the internal state of the device can not be effected. Consequently, our attack suggeststhat for security reasons
devices must protect internal memory by adding some error detection bits (e.g. CRC).

Another way to prevent our attack on RSA signatures is the use of random padding. See for instance the
system suggested by Bellare and Rogaway [1]. In such schemes the signer appends random bits to the message
to be signed. To verify the RSA signature the verifier raises the signature to the power of the public exponent
and verifies that the message isindeed a part of the resulting value. The random padding ensuresthat the signer
never signsthe same message twice. Furthermore, given an erroneous signature the verifier does not know the
full plain-text which was signed. Consequently, our attack cannot be applied to such a system.

8 Summary

We described a general attack which makes use of hardwarefaults. The attack appliesto several cryptosystems.
We showed that encryption schemes using Chinese remainder, e.g. RSA and Rabin signatures, are especially
vulnerableto thiskind of attack. Other implementations of RSA are a so vulnerable though many more faults
are necessary. The idea of using hardware faults to attack cryptographic protocols applies to authentication
schemes as well. For instance, we explained how the Fiat-Shamir and Schnorr identification protocols can be
broken using hardware faults.

Verifying the computation and protecting internal storage using parity bits defeats attacks based on hardware
faults. We hope that this paper demonstrates that these measures are necessary for security reasons.
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